Integer-Valued Moving Average Models with Structural Changes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Order Threshold Integer-valued Moving Average Processes

In this paper, we introduce a new threshold model with poisson innovation: Threshold Integer-Valued Moving Average model (TINMA). We derive the numerical characteristics of TINMA(1) model. Stationary and ergodicity are also obtained. The methods of estimation under analysis is Yule-Walker. Some simulation results illustrate the performance of the proposed method.

متن کامل

Integer Valued AR(1) with Geometric Innovations

The classical integer valued first-order autoregressive (INA- R(1)) model has been defined on the basis of Poisson innovations. This model has Poisson marginal distribution and is suitable for modeling equidispersed count data. In this paper, we introduce an modification of the INAR(1) model with geometric innovations (INARG(1)) for model- ing overdispersed count data. We discuss some structu...

متن کامل

Moving Average Processes with Infinite Variance

The sample autocorrelation function (acf) of a stationary process has played a central statistical role in traditional time series analysis, where the assumption is made that the marginal distribution has a second moment. Now, the classical methods based on acf are not applicable in heavy tailed modeling. Using the codifference function as dependence measure for such processes be shown it be as...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Stationarity of Generalized Autoregressive Moving Average Models

Time series models are often constructed by combining nonstationary effects such as trends with stochastic processes that are believed to be stationary. Although stationarity of the underlying process is typically crucial to ensure desirable properties or even validity of statistical estimators, there are numerous time series models for which this stationarity is not yet proven. A major barrier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2014

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2014/231592